
AD-A264 733
IfJ! fj J h ill j !i 1 ill Ill

NSWCDD/TR-92/243

PHALANX CIWS CONTROL SYSTEM STABILITY, AIM
BIAS COMPENSATION, AND NOISE SENSITIVITY

BY DEMETRIOS SERAKOS
COMBAT SYSTEMS DEPARTMENT

MAY 1992

2 7993~

Approved for public release; distribution is unlimited-

i sw )NAVAL SURFACE WARFARE CENTER

DAHLGREN DIVISION
Dahigren. Virginia 22448-5000

93-11286411•1I1 , JI! 1 i



NSWCDD/TR-92/243

PHALANX CIWS CONTROL SYSTEM STABILITY, AIM
BIAS COMPENSATION, AND NOISE SENSITIVITY

BY DEMETRIOS SERAKOS

COMBAT SYSTEMS DEPARTMENT

MAY 1992

Approved for pubIic release; distribution is unlimited

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION

Dahlgren, Virginia 22448-5000



NSWCDD/TR-921243

FOREWORD

This report presents a stability analysis of an aiming control system that is similar to that used in
the Block I PHALANX Close-In Weapon System (CIWS). Besides stability, other design goals of the
control system are aim bias compensation and noise sensitivity. This report presents a theoretical
analysis of these.disparate goals and design tradeoffs are also presented. It is a continuation of previ-
ous work reported in Bailey, E.P. and Price E.L., An Analysis of Gun Aim Bias Compensation for the
PHALANX CIWS, FMC Corporation, King George, Virginia, May 1987, which largely was an analysis
of improved performance over a previ3us control system. Control theoretic issues such as stability,
aim bias compensation and noise sensitivity were not considered in that work.

The author -.,ishes to thank E.L. Price and M.H. Pee of FMC Corporation for introducing this
subject and for their technical advice.

This report has been reviewed by A. Garza, Head, Syzstem Engineering Branch and R.E. Lutman,
Head, AEGIS Ship Combat Systems Division.

Approved by:

L.M. Williams, 111, Head
Combat Systems Department
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ABSTRACT

An aiming control system, which is similar to that in the Block I PHALANX Close In Weapon
System is considered in this report. An important feature of this control system is that it compensates
for any gun aim bias. An aim bias may be caused by variations in the gun, ammunition, or environ-
mental conditions. Design issues considered are stability, aim bias compensation, and sensitivity to
feedback noise. These are disparate design goals. Design tradeoffs that quantify this disparity are
presented. An example is given that illustrates how the analysis developed in this report might be
used in a design situation.
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INTRODUCTION

in this report an aiming control system that is similar to that in the Block I PHALANX Close-In

Weapons System (CIWS) is considered. Among the important issues considered in designing this

control system are stability, target tracking, disturbance rejection and sensitivity to noise. As it turns

out, designing a system with better target tracking makes it less stable. Also, better target tracking

makes the system more sensitive to noise. A system less susceptible to noise will be more susct!pi-ble

to disturbances. Previously, no analytical work has been done quantifying these design considerations.

The purpose of this report is to present an analytical picture to these design considerations that may be

used to sharpen a current design or speed the development of a future design.

A broad picture of the problem is as follows: The desired gun aiming angle is fed into the con-

trol system. The aiming angle is treated as a reference input - the manner in which it is obtained is

not considered in this report. The gun tracks this reference input. A proportional plus integral con-

troller is used in an inner feedback loop to accomplish this. One problem is that there may be an aim

bias. Among the factors contributing to an aim bias are: misalignment of the gun aiming mechanism,

the barrels heating due to the gun being fired, barrel wear, variations in the propellant used, wind,

temperature, and barrel warping due to sun load. The aim bias is modeled as a disturbance input.

The control system features a second outer feedback loop to null out this bias. The baLlet stream

angle at the target is measured. Ideally, this stream should match the measured gun angle at the time

those bullets were fired. If the two angles do not match, the error angle is fed back around the outer

loop to compensate. The bullet stream angle measurement is noisy, so a noise filter is included in the

outer feedback loop.

In the PHALANX CIWS Aiming Model section, a model for this system is defined and dis-

cussed. The transfer functions that are needed are computed. It will be seen that this is a linear sys-

I
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tern with a time-varying time delay. Time delays are destabilizing. The time delay arises because the

feedback to null out the aim bias involves past reference angles. The stability of the system is then

considered. The first consideration is the stability of the inner loop. This part of the system is a

linear system (with no time delays). The general, but conservative, Small-Gain Theorem', is used to

give conditions for the closed-loop stability of the overall system. The Small-Gain Theorem applies to

systems with time-varying time delays. Roughly speaking, the Small-Gain Theorem states that a feed-

back system is stable if the gain of the transfer functions around the feedback loop is less than one. In

the Nyquist Stability With A Conjecture section, less conservative conditions for closed-loop stability

are given, but a conjecture is needed.

Also in the PHALANX CIWS Aiming Model section, some design guidelines are given for dis-

turbance rejection and sensitivity to noise. The disturbance is a perturbation on the system output.

Hence, the disturbance is modeled as an addition to the system output. The noise acts to corrupt the

measurement of the output signal. Hence, the noise is modeled as an addition in the outer feedback

loop. Thus, the filter has two conflicting tasks. First, it should block off the sensor noise. At the

same time it must riot cut off the feedback loop too much because no information about the distur-

bance would be fed back, which is the point of the feedback loop. The idea is to observe that the fre-

quency spectrum of the disturbance and noise are different. The disturbance has a low frequency

spectrum, while the noise has a high frequency spectrum. Disturbances, such as aim bias, would be

slowly varying. Noise, for instance, due to thermal effects on measurement sensors, would have a

much higher frequency range. Thus, the desired filter is a low pass filter. The control design pro-

cedure used in this report is patterned after the theory developed in Fruedenberg-Looze2.

An example is presented to illustrate how the stability conditions and performance measures,

which are developed in this report, are used to design a satisfactory control system. The task of the

designer is to select the proportional feedback gain, the integral feedback gain and the filter.

2
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PHALANX CIWS AIMING MODEL

In this section, we discuss the model for the PHALANX gun, which is taken from

Bailey-Price3 . Figure 1 shows the angle geometry of the system. Figure 2 shows the timing

diagram. In this diagram, the range of the bullet increases with time while the range of the target

decreases with time. Figure 3 shows the block diagram for the system, using Laplace transform

transfer functions. Following is a list of variables.

0a: Aim pointing angle (reference input)

Og : Measured gun angle

Ob: Bullet angle at target

(d: Disturbance input

n: Measurement noise input

tf : Bullet flight time (seconds)

tf: Estimated bullet flight time (seconds)

This is a one-dimensional model. In real life, there would be two angular channels, azimuth and

elevation, bu, they would be independent of each other. The plant is modeled by a pure integrator.

We use a proportional-integral (PI) controller, the gains are Kp and K1. The derivative of 0. is also

a control input. This enables the gun to track inputs of a higher degree than step inputs; e.g., ramp

inputs. There is an inner loop feeding back 0g. This loop takes out any error of the gun aiming

mechanism to the reference input. The outer loop, feeding back 0 b, takes out errors due to any dis-

turbances. This includes, in particular, the gun aim bias (the gun aim bias is modeled as a distur-

bance). There is a time delay, because 0 b is the angle of the bullet stream at the target. The flight

time of the bullets, tf, is from the gun to the target. To get the gun aim bias, 0 b is compared to the

expected bullet stream angle at the target, 0g delayed by the estimated bullet flight time, tf. The goal

of the filter, F (s), is to filter out the sensor noise. Note that tf changes as the range to the target

changes.

3
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FIGURE 1. PHALANX CIWS ANGLE DIAGRAM

PREDICTED INTERCEPT POINT

ACTUAL INTERCEPT POINT

t--0

RANGE

FIGURE 2. PHALANX CIWS TIMING DIAGRAM
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FIGURE 3. PHALANX CIWS AIMING CONTROL SYSTEM
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A point to consider is whether this system is a time-varying system. At first glance, becaus"ec tf

is not fixed, it may be cooncluded that it is a time-varying system. In an implementation, t/ will

change continuv'-. as the target maneuvers, and if will change at discrete instances as it is recom-

puted by software within the gun system. Apparently, there is no problem wit. classifying the system

as ame-varying. However, there is another point of view. The system may also be classified as a

time-invariant adaptive system. If a target is engaged one hour later (or a day later) the system will

perform the same; hence, it is time-invariant. The bullet flight time, tf, ma, be thought of as a gen

eralized input and tj- is then an adaptation parameter computed by system software.

The first thing io do in employing the Small-Gain Theorem is to compute the required system

transfer functions. We need the transfer functions (0 b!0 a )(s), (Ob1 0 d )(s) and (OhIn )(s ). The:'ý

may be computed using Mason's gain rule". We organize the loop gains and path gains- There are

three loops.

(Kps + K,)

S 2

(ýKps + KI)e.,Fs

S2

(KPs + Ko)
L3 - e-fsF(s)

There are two paths from 0. to 0 ,b.

S2 e

with associated loop touching factor A'=I, and

with A' = 1, There is one path from ed to Ob. Pd I with Ad = 1-LI-L2. The path from n to

Ob has gain

(Kps K1 ) -,~

P' = -F (s ) K e
S2

6
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The loop touching factor is A' = 1. We have that the Mason loop gain is A 1 -, 1-L 2-L 3 (there

are no no touching loops). Now,

0b PaAa + P"Aa
-- (sS) =

Oa A

SKps + Kj -ifs
I1+ s2

S 2
1 + (Ks+ 1) + F(s)[e-tfs e ~1}

(S 2 + Kps + KI)e-'fs

s2+ (Kps + K1 ){1 + F(s)[e-tfS -, $ S

If itf =tf, then (0 b /Oa )(s) becomes

-- 6 (s) = e1 ' s

Oa

;i.e., the bullet angle at the target is equal to the aiming angle delayed by if seconds (so the aim bias

is compensated for) which is what we want. Right away, we see from Equation (1) that the time

delay estimation error is attenuated or amplified by F. If 0 a is not used as a control input, then

P--0 and ()b/Oa )(S)l tr=tf becomes

)b Ks= +Ks+K, -
ea () i=t s 2 +Kps +±K, J

which is a type zero system and so, only step inputs can be tracked.

The disturbance transfer function is

Ob pdAd-•(s) -=

Od A

(Kps + K,)2 ( 1 - e-' sF (s))

+ (Kps + K1 ) { + F(s)[e-t's - e-tif S
S

2

7
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s2 + (Kps + Kl)(1 - e-"F(s)}

s+ (Kps + K,)(I + F(s)le-I S -e -11

= I -T(s) (2)

where

F(s)(Kps + Kt)e-t"sT (s ) = s(3)
s 2 + (Kps + Kt){ I + F(s)[e-t - e I (

The noise transfer fivnction is

hs PnAn

n A

-F (Kps +KI) K S
s2

(K p s + K ,) e _- ff. j1~ ~ I + F esI-:
S "

-F (s)(Kp s + K, )e

S + (Kps + K)({I + F(s)[e-'Is- -e- }

= - T(s) (4)

These transfer functions are linear with time delays. Equations (2) and (4) compare to the equation

(2.3.3) found in Reference 2.

We next consider the stability of the system. The first task is to assure the stability of the inner

loop as if it were a stand-alone system. The transfer function of the inner loop is

0_g Ks + K,

Oa s 2 + Kps + K, (5)

,)r stability, the poles of the inner loop characteristic polynomial s2 + Ks + 1'; must be in the left

half plane. This is done by selecting Kp > 0 and K, > 0, which also makes the inner loop a

minimum phase system. Note that when j) 4 1K,. 09 > 1.
Oa

8
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We use the Small-Gain Theorem to give sufficient conditions for the stability of the overall sys-

tem. In fact, the conditions will ie conservative, which is a consequence of the broad applicability of

the Small Gain Theorem, which includes time-varying systems with time delays. Frequency domain

conditions will be given because they will be the most useful in conjunction with the noise sensitivity

and disturbance rejection conditions. To consider the stability of Lhis system, it wiil be convenient to

redraw the block diagram, Figure 4. Because 0 a and 0 a are inputs to the system, 0 a is restricted

such that both I Oa(t)I and 160,(t)I are bounded. By superposition, the stability of the system is

determined by the stability of the system with switch 1 (sw#l) closed and switch 2 (sw#2) open and

vice versa. To use the Small-Gain Theorem, we need the closed-loop gain for each of these cases.

The system will be stable if the closed-loop gain of the system is less than one. (See Corollary 15, p.

43 of Reference 1.) When sw#1 is closed and sw#2 is open, the loop transfer function is

L =F(s).(e-s - e ,-;S) (Kps +K) (6)(s-1 + Kps + KI)

When sw#2 is closed and sw#1 is open, Figure 4 may be redrawn to look like Figure 5(a). But Fig-

ure 5(a) is stable if Figure 5(b) is stable. Figure 5(b) is the same as Figure 5(c). These may be

verified e.g, with Mason's rule. Hence, the loop transfer function when sw#2 is closed is again given

by Equation (6). By the Small-Gain ThLUI.,ri, a sufficient condition for the stability of the system is

that the loop gain given by Equation (6) is less than one.

The loop gain, Equation (6), is shown in Figure 6. We need the gain from e to the point x 3 to

be less than one. Because this is a linear system, we just need to consider what happens when a sig-

nal with unit amplitude is input; e.g., e (t)=cos(coot). The signal at point xI is

G ((o)os(oý0 + 01) where

Kpjo) + KIG1(o) = -)+ tj +K[(7)

I W2+ Kpjco + K1

and where 01 is a constant. The gain of e up to x 1 is G1 (Oo) (i.e., Ilxii1 = G (o0o)). At x2 the

signal is G 2(co%)G 1( 0)o)cos(w, + 1 + 4t))

9
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=110

SW#2 6a

Od

()a + + Kps + K, + e- +

+ e
sw#1 + " s +

, 0b

Se•S

F'•s) -a

FIGURE 4. BLOCK DIAGRAM FOR STABILITY ANALYSIS
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+

+

K�s +K1

S2  +

(a)

+

(1,)

(c)

FIGURE 5. EQUIVALENT BLOCK DIAGRAMS
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FIGURE 6. LOOP GAIN

SKp (jio))+ K1 ]

Re~ Kp (j(o) 2+ K1 ]

FIGURE 7. NYQUIST PLOT OF (Kp(jo)) + K~(-j'
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where

G 2(o) = e - e--116) = I 2.sin((tf - t-)o/2)1 (8)

and where

t(t) = anglete-to - e -if J.M = (t - tf )(o+
2 (9)

is a time-varying phase shift. Because 11(t) is time varying, the signal at x 2 is an exponentially

modulated signal. It is not a signal with frequency woo, rather it has a spectrum centered about the

carrier frequency oo. Its bandwidth may be computed by Carson's rule5 . Let (ti - if) have max-

imum deviation, OA, and maximum frequency, W. The deviation ratio is A = 1 OAo. By Carson's

rule, the bandwidth of the signal at x 2 is B (wo) = 2-(A + 1)-W. We will assume that the spectrum

of x 2 is entirely contained within the bandwidth B (WO) on either side of the carnier frequency oo.

The gain of the signal at x 2 is G 2(0o0).G 1(4o), the same as it would be if jt(r) were a constant. We

compute the gain at x 3 due to e (t) = cos(oot) as follows:

Compute B (wo) and find

G3(B (COO)) = max IF (o)I (10)
oo - B (aoo) -< (o < oo + B (o)D)

then the gain at x 3 is bounded by

G ( 0 0) = G 3 (B(0o))'G2(Ok)'G i(co) (I1)

The loop gain for the overall closed loop system is bounded by

G = sup G (coo) (12)

We take a brief look at the size of the loop gain. For higher frequencies, looking at Equation

(11), things should be fine because G I(w) goes to zero, G 2(co) is less than two and the filter is

selected such that G 3(co) is bounded. At low frequencies, G I(CO) is about one and G 2(co) approaches

zero. The product of G 1((o) and G3(B (o)) must be less that one half before G 2(co) reaches two for

the first time. For faster inner loop dynamics, G I(co) will break at a higher frequency, so that

I tf - i-1 must be smaller; hence, a more accurate tf is required. Suppose that the filter is a low

13
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pass filter of the form F (s) = A /(s + A ). Again, looking at Equation (8). if the filter breaks at a

higher frequency, 'tf must be more accurate. Also, for this type of filter, if W is larger G3(B

will drop at a higher frequency, so that a more accurate t/ is required. (See Equation (10).)

Consider the disturbance and noise. As mentioned in the Introduction, disturbances are a factor

at low frequencies, while noise is a factor at high frequencies. Looking at Equations (2) and (4), dis-

turbance rejection (at low frequencies) and low noise sensitivity (at high frequencies) are achieved if

II T(jo))1I is small at high frequencies and T(s) = I at low frequencies. If the system is run open-

loop; i.e., F (s) = 0, the system will not be susceptible to noise; however, we need the feedback to

reduce the impact of the disturbance to the system. At low frequencies e i _IJ and because

(o(t$ - t$) 0. we have that e -u 0)) - e-'t (i 0)) 0. Hence, at low frequencies

F (j o•)(Kp j o + K ) =F(c)
T~jco) = =Fjo

--W 2 + (K, jo + Kt)

so, F(jc0) close to one at low frequencies gives better disturbance rejection. Again, suppose the filter

is of the form F (s) = A /(s + A ). We see from Equations (2) and (4) that if F breaks at a higher

frequency there is better disturbance rejection, while F breaking at a lower frequency reduces sensi-

tivity to noise. A design example will be presented later to clarify this discussion.

NYQUIST STABILITY WITH A CONJECTURE

The Nyquist stability conditions will be used in this section to analyze the closed-loop stability

of the system. To handle the time-varying nature of this systelm, the following conjecture will ne

accepted. Let T be large enough so that all conceivable tf, tf are in 10,T ]. If the system is stable

for all fixed (time invariant) tf, if E [0,T , then the system is stable for time varying f, i so long

as they remain in the interval [0,T]. We do not mean that this conjecture could be proven (as

counter-examples exist), rather we want to find some conditions which would be necessary.

14
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Equation (1) has

Oa (S) (S2 + Kps + K,)e-' 5s

s2 + (Kps + K,)(1 + F(s)[e-'- - e -Ifs]

(Kp s + K, )F (s )[e -(If +if )s - e -2i s]

S2 + (Kps + K,){ l + F(s)[e-"Is - e-if S]

(Kt s + K,) [e - + if Ir _ -2•:" 1

=e-tfS + F(s) S (13)

1 + (K1s + K,) I + F(s)[e-t"s - e-'lSl
s 2

If t= if the second term in Equation (13) would be zero and (Ob 1a )(s ) would be a stable transfer

function. Consider the stability of the second term. We need the zeros of

+(Kps + K) F(s)(e-tfS- e-is)} (14)$ 2

to be in the left half plane. First, the Nyquist plot of the first factor (Kp s + K1 )/s 2 is drawn. See

Figure 7. The phase margin is 0 and there is infinite gain margin. The second factor of Equation

(14) is of the form (1 + e) with e = F (s )(e-tIs - e-ifs). If this term has a phase angle of less than

*, the closed-loop system will be stable. A sufficient condition for this is

I sin-'1(E)I < 0 (15)

Equation (15) presents a tradeoff between the error in the flight time estimation error and the filter

F (s). That is, wider filter bandwidth requires more accurate if .

DESIGN EXAMPLE

The results presented in the PHALANX CIWS Aiming model section are illustrated by an exam-

ple. The inner loop stability and performance, overall system stability, disturbance rejection and sens;-

15
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tivity to noise are considered. First, proportional and integral gains Kp and K1 are selected for inner

loop stability and performance. We select Kp and K1 so that the two inner loop closed-loop poles are

evenly spaced on a half circle of radius 10 in the left half plane. This gives Kp = 17.33 rad and

K1 = 100.0 rad/sec. These poles determine the reaction performance of 0. to 0a.

We choose the filter to be a first-order low pass filter,

F(s) = A (16)

(s +A)

The pole of F (s) is selected so that the filter breaks at a higher frequency than the disturbance fre-

quency band and at a lower frequency than the noise frequency band. With this choice of F(s),

Equation (3) becomes

A .(Kps + K1).e-I 5s
T (s) + Kps + Kl).(s + A) + A .(Kps + Kl).[e-'fs - e-(7

and Equation (6) becomes

A .(e-tf s - e-t S).(Kps + KI)L = (18)
(s + A).(s 2 + Kps + K1 )

We want to compute the maximum possible bullet :.ight time estimation error that maintains sta-

bility of the overall closed-loop system. Note that (tf - tf ) enters into Equation (11) in two places.

The difference (tf - if ) appears in G2(o0 ) (See Equation (8).) and in G 3(B (0o)) via the bandwidth

B (wo), (Thus B (o0) = 2.(lmaxI tf - if I -(a + I)W.) We set values for A and W, say A = 1.0

rad/sec and W = 1.0 rad/sec. With this value for W, we find the maximum Itf - if I such that the

loop gain is less than one. Figure 8 shows loop gain vs. frequency for I if - t- I = 0.29 sec. The

gain is less than one for all frequencies; hence, by the Small-Gain Theorem, the overall closed loop

system is stable (for IIt- - •f I < 0.29).

As stated earlier, if A is larger (the filter breaks at a higher frequency), t1 must be more accu-

rate; while if A is smaller tf may be less accurate. Also, a larger W will require a more accurate t-

while a smaller W allows a less accurate if. Several test cases are given in Table 1.

16
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10-2-

10-31
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FIGURE 8. LOOP GAIN VS. FREQUENCY

101 1. . , T ... . ..I .. ..

100

10-1-
10° \
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FREQUENCY (RAD/SEC)

FIGURE 9. DISTURBANCE GAIN VS. FREQUENCY FOR tf 5.0 SEC, t = 5.25 SEC
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TABLE 1. MAXIMUM ALLOWABLE

[tf - if I FOR STABILITY

Maximum I tf - if I 1

A rad/sec Wrad/sec maxI tf - if sec

1.0 0.1 1.09
10.0 0,1 0.129

1.0 1.0 0.29
10.0 1.0 0.10

100.0 1.0 0.069
0.1 10.0 0.32
1.0 10.0 0.068

10.0 10.0 0.068

Finally, we take a look at the disturbance and noise transfer function frequency plots. For the

remainder of this report A =1.0 rad/sec and W=1.0 rad/sec. The disturbance and noise transfer func-

tions, Equations (2) and (4), respectively, will be treated as though tf and tf are constants. Time

varying t1 and if will widen out the disturbance and noise spectrums. Figure 9 shows

1 (obIod)(co.)l vs. o for tf = 5.0 sec and if = 5.25 sec. This is about the longest flight time of

the bullets. For frequencies less than 0.01 rad/sec, this transfer function has gain less than 0.1;

hence, the low frequency disturbances are filtered out and have little effect on the output. Figure 10

shows I (0 In )(j o))I vs. co for the same if and tf. For frequencies greater than 40 rad/sec, the

gain of this transfer function is less than 0.01; hence, the high frequency noise is filtered out. Finally,

we check the disturbance and noise transfer functions for a short bullet flight time. Figures 11 and 12

show 1 (0bi 0 d)(j o)I and I (Ob/n)(io)) vs. frequency, respectively, for tf = 1.25 sec and

tf = 1.0 sec. These represent approximately the shortest bullet flight time. Again, the low frequency

disturbances and high frequency noise are filtered out. Of course, Table 1 may be used the other way

around; i.e., given a maximum I tf - if , A and W may be selected.

Looking at Figures 9 and 11, it seems that 1 (Ob/ 0d )(j 0o) I drops below 0.1 at too low of a fre-

quency. We would like to get the curves in these figures to drop down at higher frequencies. There

is a physical limitation, however. From Figure 3, it is seen that a variation in the disturbance cannot

be immediately detected - there is a time delay of tf seconds. This can also be seen from Equations
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(2) and (17). For I (Ob/Od)(wCO)I to approach zero, T(jw) must approach one in magnitude and

angle. The factor e -il" in Equation (17) adds phase lag. We further illustrate this situation in Fig-

ure .3. There are three curves, the first is 1 - (Kp (J ow) + K1 )-A;,

((W-02 + Kp(jo)) + K)'(jco + A ))I vs. w. This is a plot of the disturbance gain with I, = lt = 0

(and the other parameters as before.) This plot represents the ideal casc of disturbance rejection, from

the point of view of the physical limitation; i.e., the aim bias is instantaneously fed back, If Kp and

A were increased, the break would be at a higher frequency. The second curve in Figure 13 is

I e- 'ftI vs. (o with tf = 2.5 sec. This is an average bullet flight time. This represcnts the

physical limitation due to time delay of how fast the disturbance transfer function may approach zero

as o--0. The third curve is a plot of I (ObI,,d)(iW)l vs. co with tf = -tf = 2.5 sec, :,o that there is

no estimation error. This curve has the combined effects of the first two curves. Hence, the third

curve breaks at a lower frequency than either of the first two curves. The tirst two curves may be

thought of as representing the limit of the disturbance rejection performance of the gun aiming control

system.
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CONCLUSION

The analysis presented in this report provides new insights into the stability characteristics of the

aim bias compensation function of the PHALANX CIWS Block 1. Also, tradeoffs between the com-

peting design goals of stability, disturbance rejection (e.g. aim bias compensation) and sensitivity to

feedback noise are presented.

The aiming control sysem is a linear system with a time-varying time delay. The aiming control

system features an inner feedback loop servomechanism to aim the gun and an outer loop to null out

any aim bias. The time delay results from feeding back the bullet angle at the target through the outer

loop. Since the bullet flight time changes, the time delay is time-varying. The Small-Gain theorem

may be used to give sufficient stability conditions. The Small-Gain theorem and the noise and distur-

bance transfer functions are used to analize design tradeoffs. Faster inner loop dynamics, a noise filter

with wider bandwidth or a higher frcquency in the time delay estimation error signal will result in a

less stable system. The filter in the outer loop regulates the disturbance rejection and noise filtering

bandwidths. Since the noise and disturbance transfer function must sum to one, more noise filtering

results in less disturbance rejection and vice versa. Finally, we have found that the time delay

represents a limit to the disturbance rejection bandwidth of the control system.

The insights and design tradeoffs can be used to screen alternatives in the first stages of concept

development cf new applications or upgraded versions of the PHALANX system. A judicious combi-

nation of analytical and expcrimental analysis will allow a design to be achieved with good balance

between stability and responsiveness with a reduced amount of time and effort.
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